Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors

Author:

Hermann Andreas123,Kim Jeong Beom45,Srimasorn Sumitra1,Zaehres Holm5,Reinhardt Peter5,Schöler Hans R.5,Storch Alexander1236

Affiliation:

1. Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany

2. Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany

3. German Center for Neurodegenerative Diseases (DZNE), Research Site Dresden, 01307 Dresden, Germany

4. Hans Schöler Stem Cell Research Center (HSSCRC), Max Planck Partner Group-MBL, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea

5. Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany

6. Department of Neurology, University of Rostock, Rostock, Germany

Abstract

Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of the transcription factors OCT4, SOX2, KLF4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk of chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factors is sufficient to generate iPSC. We recently showed that a reduction of reprogramming factors in murine cells not only reduces reprogramming efficiency but also may worsen subsequent differentiation. To prove whether this is also true for human cells, we compared the efficiency of neuronal differentiation of iPSC generated from fetal human neural stem cells with either one (OCT4;hiPSC1F-NSC) or two (OCT4, KLF4;hiPSC2F-NSC) reprogramming factors with iPSC produced from human fibroblasts using three (hiPSC3F-FIB) or four reprogramming factors (hiPSC4F-FIB). After four weeks of coculture with PA6 stromal cells, neuronal differentiation ofhiPSC1F-NSCandhiPSC2F-NSCwas as efficient asiPSC3F-FIBoriPSC4F-FIB. We conclude that a reduction of reprogramming factors in human cells does reduce reprogramming efficiency but does not alter subsequent differentiation into neural lineages. This is of importance for the development of future application of iPSC in cell replacement therapies.

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3