Affiliation:
1. Huihua College, Hebei Normal University, Shijiazhuang 050000, China
2. Tourism College, Hebei University of Economics and Business, Shijiazhuang, Hebei 050061, China
Abstract
Community platforms featuring user sharing and self-expression in social media generate big data on tourism resources, which, if fully utilized in a smart tourism system driven by high-tech and new technologies, will bring new life to the field of smart tourism research and will play an important role in the development of Internet+ tourism. However, tourism data in social media has the following characteristics: diversity, redundancy, heterogeneity, and intelligence. To address the characteristics of tourism data in social media, this thesis focuses on the following challenges: it is difficult to efficiently obtain tourism visualization information (text and images) in social media; it is difficult to effectively utilize tourism multimodal heterogeneous information; it is difficult to properly retrieve multimedia entity information of tourism attractions; and it is difficult to reasonably construct tourism personalized recommendation models. In this paper, an image search reordering method based on a hybrid feature graph model is proposed to realize the rapid acquisition of high-quality Internet images from the web using hybrid visual features and graph models, thus providing data security for the analysis of social media-based tourism images. To address the shortcomings of current search engines for image retrieval, visual information is used to bridge the problem of semantic gap between text-based search and images. To address the limitation of single visual features, we use latent semantic analysis to fuse multiple visual features to obtain hybrid features, which not only combine multiple single features but also preserve the potential relationship between these features. To address the shortcomings of the reordering methods based on classification and clustering, a reordering framework based on the graph model is used to reorder the images and finally complete the image search reordering based on the hybrid feature graph model. This method can obtain image information in social media with high efficiency and quality and then prepare for the subsequent work of tourism image analysis mining and personalized recommendation.
Funder
Research Project: 2019 Research Project of Military-Civilian Integration Development in Hebei Province
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献