Antioxidative Reactivity of L-Ascorbic Acid and D-Isoascorbic Acid Species towards Reduction of Hexachloroiridate (IV)

Author:

Zhang Han1,Xia Yanqing1,Zhang Peng2,Hou Liqian1,Sun Ying3,Lu Zhaozhan3,Tang Yunfeng3,Tian Hongwu3,Shi Tiesheng1ORCID

Affiliation:

1. College of Chemistry, Chemical Engineering, and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong Province, China

2. Department of Articular Surgery, Linyi People’s Hospital, Linyi 276100, Shandong Province, China

3. National Engineering Technology Center of Chirality Pharmaceuticals, Lunan Pharmaceutical Group Co.,Ltd., Linyi 276006, Shandong Province, China

Abstract

The pair [IrCl6]2–/[IrCl6]3– has been demonstrated to be a good redox probe in biological systems while L-ascorbic acid (AA) is one of the most important antioxidants. D-isoascorbic acid (IAA) is an epimer of AA and is widely used as an antioxidant in various foods, beverages, meat, and fisher products. Reductions of [IrCl6]2– by AA and IAA have been analyzed kinetically and mechanistically in this work. The reductions strictly follow overall second-order kinetics and the observed second-order rate constants were collected in the pH region of 0 ≤ pH ≤ 2.33 at 25.0°C. Spectrophotometric titration experiments revealed a well-defined 1 : 2 stoichiometry, namely Δ[AA] : Δ[Ir(IV)] or Δ[IAA] : Δ[Ir(IV)] = 1 : 2, indicating that L-dehydroascorbic acid (DHA) and D-dehydroisoascorbic acid (DHIA) were the oxidation products of AA and IAA, respectively. A reaction mechanism is suggested involving parallel reactions of [IrCl6]2– with three protolysis species of AA/IAA (fully protonated, monoanionic, and dianionic forms) as the rate-determining steps and formation of ascorbic/isoascorbic and ascorbate/isoascorbate radicals; in each of the steps, [IrCl6]2– acquires an electron via an outer-sphere electron transfer mode. Rate constants of the rate-determining steps have been derived or estimated. The fully protonated forms of AA and IAA display virtually identical reactivity whereas ascorbate and isoascorbate monoanions have a significant reactivity difference. The ascorbate and isoascorbate dianions are extremely reactive and their reactions with [IrCl6]2– proceed with the diffusion-controlled rate. The species versus pH and the species reactivity versus pH distribution diagrams were constructed endowing that the ascorbate/isoascorbate monoanionic form dominated the total reactivity at physiological pH. In addition, the value of pKa1 = 3.74 ± 0.05 for IAA at 25.0°C and 1.0 M ionic strength was determined in this work.

Funder

Critical R&D Plans of Shandong Province

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3