Affiliation:
1. School of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, China
2. Institute of Network and Communication Technology, Sichuan Normal University, Chengdu 610101, China
Abstract
With the rapid development of Android, a major mobile Internet platform, Android malware attacks have become the number one threat to mobile Internet security. Traditional malware detection methods have low precision and greater time complexity. At present, image detection methods based on deep learning are used in malware detection. However, most of these methods are based on the largescale convolutional neural network model (such as VGG16). The computation and weight files of these models are very large, so they are not suitable for mobile Internet platforms with limited computation. A novel detection method based on a lightweight convolutional neural network is presented in this study. It transforms Android malware classes.dex, Androidmanifest.xml, and resource.arsc into RGB images and uses the lightweight convolutional neural network to extract the features of RGB images automatically. The experimental results of this study indicate that the method performs well in terms of precision and speed of detection.
Subject
Computer Networks and Communications,Information Systems
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献