Numerical Modeling and Investigation on Aerodynamic Noise Characteristics of Pantographs in High-Speed Trains

Author:

Sun Xiaoqi1,Xiao Han2ORCID

Affiliation:

1. School of Mathematics and Statistics, Qingdao University, Qingdao, China

2. School of Mathematical Sciences, Ocean University of China, Qingdao, China

Abstract

Pantographs are important devices on high-speed trains. When a train runs at a high speed, concave and convex parts of the train cause serious airflow disturbances and result in flow separation, eddy shedding, and breakdown. A strong fluctuation pressure field will be caused and transformed into aerodynamic noises. When high-speed trains reach 300 km/h, aerodynamic noises become the main noise source. Aerodynamic noises of pantographs occupy a large proportion in far-field aerodynamic noises of the whole train. Therefore, the problem of aerodynamic noises for pantographs is outstanding among many aerodynamics problems. This paper applies Detached Eddy Simulation (DES) to conducting numerical simulations of flow fields around pantographs of high-speed trains which run in the open air. Time-domain characteristics, frequency-domain characteristics, and unsteady flow fields of aerodynamic noises for pantographs are obtained. The acoustic boundary element method is used to study noise radiation characteristics of pantographs. Results indicate that eddies with different rotation directions and different scales are in regions such as pantograph heads, hinge joints, bottom frames, and insulators, while larger eddies are on pantograph heads and bottom frames. These eddies affect fluctuation pressures of pantographs to form aerodynamic noise sources. Slide plates, pantograph heads, balance rods, insulators, bottom frames, and push rods are the main aerodynamic noise source of pantographs. Radiated energies of pantographs are mainly in mid-frequency and high-frequency bands. In high-frequency bands, the far-field aerodynamic noise of pantographs is mainly contributed by the pantograph head. Single-frequency noises are in the far-field aerodynamic noise of pantographs, where main frequencies are 293 Hz, 586 Hz, 880 Hz, and 1173 Hz. The farther the observed point is from the noise source, the faster the sound pressure attenuation will be. When the distance of two adjacent observed points is increased by double, the attenuation amplitude of sound pressure levels for pantographs is around 6.6 dB.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3