New Method for Fine Calculation of Bridge Temperature Field Based on BIM Solar Radiation Analysis

Author:

Wang Yin-Gang12ORCID,He Xiong-Jun2ORCID,Ouyang Fang1ORCID,He Jia3ORCID,Wu Wei-Wei2ORCID,Wu Chao2ORCID

Affiliation:

1. School of Building and Materials Engineering, Hubei University of Education, Wuhan, China

2. School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan, China

3. Department of the Built Environment, Eindhoven University of Technology, Eindhoven, Netherlands

Abstract

Fine calculation of bridge temperature fields is significant for accurately evaluating thermal actions in bridge structures. Determining thermal loads on bridge surfaces caused by solar radiation is the most challenging part of the numerical thermal analysis because the sunlit and shaded areas on bridge surfaces change continuously with the sun’s rotation. Existing methods have low accuracy in determining thermal loads and cannot be applied to complex bridges. This study presents a new method for calculating temperature fields based on the advantages of building information modeling (BIM) technology in solar radiation analysis (SRA) and information sharing. This method starts with obtaining an accurate hourly insolation distribution on bridge surfaces through SRA implemented in a BIM system. Then, a Python script seamlessly maps the insolation information to finite element surfaces as thermal loads. This paper details the new method’s implementation steps and technical details, and a practical application on a concrete box girder demonstrates its applicability and effectiveness. Compared with previous methods, the proposed method has significant advantages, such as a more accurate calculation for solar radiation, a lower technical threshold, a higher degree of automation, less computational time, and easier finite element modeling.

Funder

Hubei Provincial Department of Education

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3