Joint Dense Residual and Recurrent Attention Network for DCE-MRI Breast Tumor Segmentation

Author:

Qin ChuanBo1ORCID,Lin JingYin12ORCID,Zeng JunYing1ORCID,Zhai YiKui1ORCID,Tian LianFang3ORCID,Peng ShuTing1,Li Fang4

Affiliation:

1. Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China

2. College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518000, China

3. Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China

4. Jiangmen Maternal and Child Healthcare Hospital, Jiangmen 529020, China

Abstract

Breast cancer detection largely relies on imaging characteristics and the ability of clinicians to easily and quickly identify potential lesions. Magnetic resonance imaging (MRI) of breast tumors has recently shown great promise for enabling the automatic identification of breast tumors. Nevertheless, state-of-the-art MRI-based algorithms utilizing deep learning techniques are still limited in their ability to accurately separate tumor and healthy tissue. Therefore, in the current work, we propose an automatic and accurate two-stage U-Net-based segmentation framework for breast tumor detection using dynamic contrast-enhanced MRI (DCE-MRI). This framework was evaluated using T2-weighted MRI data from 160 breast tumor cases, and its performance was compared with that of the standard U-Net model. In the first stage of the proposed framework, a refined U-Net model was utilized to automatically delineate a breast region of interest (ROI) from the surrounding healthy tissue. Importantly, this automatic segmentation step reduced the impact of the background chest tissue on breast tumors’ identification. For the second stage, we employed an improved U-Net model that combined a dense residual module based on dilated convolution with a recurrent attention module. This model was used to accurately and automatically segment the tumor tissue from healthy tissue in the breast ROI derived in the previous step. Overall, compared to the U-Net model, the proposed technique exhibited increases in the Dice similarity coefficient, Jaccard similarity, positive predictive value, sensitivity, and Hausdorff distance of 3%, 3%, 3%, 2%, and 16.2, respectively. The proposed model may in the future aid in the clinical diagnosis of breast cancer lesions and help guide individualized patient treatment.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3