Regeneration Analysis of Bone Char Used in Water Defluoridation: Chemical Desorption Route, Surface Chemistry Analysis and Modeling

Author:

González-Ponce Herson Antonio12ORCID,Mendoza-Castillo Didilia Ileana13ORCID,Bonilla-Petriciolet Adrián1ORCID,Reynel-Ávila Hilda Elizabeth13ORCID,Camacho-Aguilar Karla Iveth1ORCID

Affiliation:

1. Instituto Tecnológico de Aguascalientes, Aguascalientes 20256, Mexico

2. Centro de Bachillerato Tecnológico Industrial y de Servicios No. 168, Dirección General de Educación Tecnológica Industrial, Aguascalientes 20010, Mexico

3. CONACyT, Ciudad de México 03940, Mexico

Abstract

High concentrations of fluoride (F−) in drinking water represent a public health threat, and consequently, effective and sustainable methods are required to improve the water quality, mainly in developing and low-income countries. This study focused on the thermodynamics of fluoride adsorption on bone char regenerated with NaOH for water defluoridation. A detailed analysis of the number of fluoride adsorption/desorption cycles, their impact on the performance and surface chemistry of bone char using different NaOH concentrations, and modeling of the adsorption mechanism using statistical physics theory was carried out. The results showed that 0.075 mol/L NaOH was effective in recuperating the defluoridation properties of bone char with a regeneration efficiency higher than 90% during five adsorption/desorption cycles. Bone char regeneration efficiency decreased up to 64% after ten adsorption/desorption cycles with a maximum fluoride adsorption capacity of 0.18 mmol/g. NaOH restored the bone char surface properties for ligand exchange of the fluoride anions via the hydroxyapatite functionalities contained in this adsorbent. It was calculated that around 0.25–0.46 mmol/g hydroxyapatite ligand exchange sites of regenerated bone char samples could be involved in the fluoride adsorption, which was also expected to be a mono-ligand mechanism. The reduction in defluoridation properties of bone char during the regeneration cycles was attributed to the decrease in the ligand exchange capacity as well as the deactivation and blocking of some functional groups of hydroxyapatite, which limited their participation in consecutive adsorption processes. This study contributes to the optimization of the recycling and reuse of bone char for fluoride removal from water to reduce the operating defluoridation costs, thus enhancing the application of this technology in low-income areas where fluorinated water represents a threat to public health.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Hindawi Limited

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3