Genomic Analysis of the SUMO-Conjugating Enzyme and Genes under Abiotic Stress in Potato (Solanum tuberosum L.)

Author:

Ghimire Shantwana12ORCID,Tang Xun23ORCID,Zhang Ning23ORCID,Liu Weigang12ORCID,Qi Xuehong13ORCID,Fu Xue13ORCID,Si Huaijun123ORCID

Affiliation:

1. College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China

2. Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China

3. College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China

Abstract

SUMO-conjugating enzymes (SCE) and SUMO (Small Ubiquitin-Like Modifiers) genes are important components of SUMOylation. SCE has a crucial role during the SUMOylation process which acts as a catalyst to transfer SUMO to the target protein. Comprehensive studies on SCE and SUMO have been performed in some plants, but studies on these genes remain limited in potato. This study is aimed at exploring the role of StSCE and StSUMO genes in abiotic stress conditions. Nine and seven putative StSCEs and StSUMO genes, respectively, were identified using different methods and databases available for potato. Chromosomal localization showed that SCE and StSUMO genes are unevenly distributed on 7 different chromosomes. Potato genome database was accessed for the expression profile of StSCE and StSUMO genes, and these genes were differentially expressed in different tissues and organs during different phases of plant growth. The expression patterns on different treatments were further evaluated using qRT-PCR for all the StSCE and StSUMO genes. The expression was upregulated in StSCE1/5/6 and 7 under salt and PEG treatment. StSUMO 1/2 and 4 were upregulated under salt stress whereas StSCE9 and StSUMO2 and 4 were observed downregulated under PEG treatment. The results of this study could be useful to explore the role of StSCE genes in potato improvement.

Funder

Potato Industry Technology System of Gansu Province

Publisher

Hindawi Limited

Subject

Pharmaceutical Science,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3