Mutual Coupling Reduction between Two Closely Spaced Antennas with a General PMC Symmetry Plane for Mobile Terminals

Author:

Fang Yijiao1ORCID,Zhong Jiangwei2,Nie Yao1,Fu Maosheng1ORCID

Affiliation:

1. West Anhui University, Lu’an, Anhui, China

2. Lenovo Research Shanghai Branch, No. 696 Songtao Road, Shanghai, China

Abstract

In this paper, an artificial general perfect magnetic conductor (PMC) decoupling structure is proposed to improve the isolation between two-element closely spaced antenna arrays with an operating frequency around 2.4 GHz. This kind of PMC structure can effectively activate the in-phase coupling current and cancel the antiphase coupling current raised by the original perfect electric conductor (PEC) equivalent interface, thereby blocking the energy coupling from one antenna input port to another. The proposed design is composed of a transmission line and a lumped element in the neutral position of a pair of electrically small antennas. To validate the utility of this approach, we analyze the current/field distribution of this structure and the mode superposition mechanism in the present paper. The results show that, with a close center-to-center distance of 5 mm, the isolation between the arrays is improved from −5 dB to −20 dB at around 2.4 GHz. Furthermore, to validate the feature that this special in-phase coupling current distribution is insensitive to frequency, we analyze the decoupling performance in a frequency reconfiguration or a dual-frequencytwo-element antenna array. The decoupling feature emerges in the proposed structure over a larger frequency range (2.2–2.6 GHz) than the previous design. A sample of this two-element frequency reconfiguration antenna system is fabricated and measured in this paper. We also realized a dual-frequency antenna system with expected isolation. Through the above discussion, we can know that these decoupling geometrical parameters can be worked in the whole range of 2.2–2.6 GHz with the same decoupling structural parameters. Good performance and compact structures make the proposed structure suitable for mobile communication applications.

Funder

West Anhui University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3