A Unique Trinucleotide-Bloc Mutation-Based Two SARS-CoV-2 Genotypes with Potential Pathogenic Impacts

Author:

Ayub Mustak Ibn12ORCID

Affiliation:

1. Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh

2. Cancer Care and Research Trust Bangladesh (CCRTB), Dhaka, Bangladesh

Abstract

SARS-CoV-2, the novel coronavirus behind the COVID-19 pandemic, is acquiring new mutations in its genome. Although some mutations provide benefits to the virus against human immune response, others may result in their reduced pathogenicity and virulence. By analyzing more than 3000 high-coverage, complete sequences deposited in the GISAID database up to April 2020, here I report the uniqueness of the 28881–28883: GGG > AAC trinucleotide-bloc mutation in the SARS-CoV-2 genome that results in two substrains, described here as SARS-CoV-2g (28881–28883: GGG genotype) and SARS-CoV-2a (28881–28883: AAC genotype). Computational analysis and literature review suggest that this bloc mutation would bring 203–204: RG (arginine-glycine)>KR (lysine-arginine) amino acid changes in the nucleocapsid (N) protein affecting the SR (serine-arginine)-rich motif of the protein, a critical region for the transcription of viral RNA and replication of the virus. Thus, 28881–28883: GGG > AAC bloc mutation is expected to modulate the pathogenicity of SARS-CoV-2. These analyses suggest that SARS-CoV-2 has evolved into SARS-CoV-2a affecting COVID-19 infectivity and severity. To confirm these assumptions, retrospective and prospective epidemiological studies should be conducted in different countries to understand the course of pathogenicity of SARS-CoV-2a and SARS-CoV-2g. Laboratory research should focus on the bloc mutation to understand its true impacts on the course of the pandemic. Potential drug and vaccine development should also keep the 28881–28883 region of the N protein under consideration.

Publisher

Hindawi Limited

Subject

Infectious Diseases,Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3