An In Vitro Verification of the Effects of Paeoniflorin on Lipopolysaccharide-Exposed Microglia

Author:

Chen Qiliang12,Liu Yaojun3,Zhang Yuanyuan45,Jiang Xinyu5,Zhang Yuqin3ORCID,Asakawa Tetsuya26ORCID

Affiliation:

1. School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China

2. Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China

3. College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China

4. Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China

5. College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China

6. Department of Neurosurgery, Hamamatsu University School of Medicine, Handayama, Hamamatsu City, Shizuoka, Japan

Abstract

Background. The neuroprotective effects of Paeoniflorin (PF) are well known. Most of the evidence was verified in vivo. We attempted to perform an in vitro verification of the effects of PF in microglia. Methods. A lipopolysaccharide- (LPS-) exposed microglia model was employed. An enzyme-linked immunosorbent assay was used to measure the levels of cytokines in the culture supernatants. A real-time polymerase chain reaction was performed to measure the mRNA expression of cytokines and M1- and M2-like genes. A western blot analysis was used to examine the expression of proteins associated with the nuclear factor-kappa B (NF-κB) signaling pathway. Results. We found that the administration of PF reversed the inflammatory response induced by LPS. It downregulated proinflammatory cytokines and upregulated anti-inflammatory cytokines. This, in turn, alleviated the oxidative injuries, downregulated the expression of M1-like genes, and upregulated the expression of M2-like genes. PF can also reverse the changes in proteins associated with the NF-κB signaling pathway induced by LPS. Conclusions. We provided evidence obtained in vitro concerning the neuroprotective effects of PF via suppressing activation of microglia, which might be associated with the NF-κB signaling pathway. These findings contribute to obtaining a deeper understanding of PF, a potential new treatment for brain injuries.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3