KPCA and AE Based Local-Global Feature Extraction Method for Vibration Signals of Rotating Machinery

Author:

Hu Xiao1,Xiao Zhihuai2ORCID,Liu Dong3,Tang Yongjun4,Malik O. P.5ORCID,Xia Xiangchen1

Affiliation:

1. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

2. Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, Wuhan University, Wuhan 430072, China

3. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

4. Technology Center of State Grid Xinyuan Co., Ltd., Beijing 100000, China

5. Department of Electrical and Computer Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada

Abstract

Feature extraction plays a key role in fault diagnosis of rotating machinery. Many methods reported in the literature are based on masses of labeled data and need much prior knowledge to select the most discriminating features or establish a complex deep-learning model. To solve the dilemma, a novel feature extraction method based on kernel principal component analysis (KPCA) and an autoencoder (AE), namely, SFS-KPCA-AE, is presented in this paper to automatically extract the most discriminative features from the frequency spectrum of vibration signals. First, fast Fourier transform is calculated on the entire vibration signal to get the frequency spectrum. Next, the spectrum is divided into several segments. Then, local-global feature extraction is performed by applying KPCA to these segments. Finally, an AE is employed to obtain the low-dimensional representations of the high-dimensional global feature. The proposed feature extraction method combined with a classifier achieves fault diagnosis for rotating machinery. A rotor dataset and a bearing dataset are utilized to validate the performance of the proposed method. Experimental results demonstrate that the proposed method achieved satisfactory performance in feature extraction when training samples or motor load changed. By comparing with other methods, the superiority of the proposed SFS-KPCA-AE is verified.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3