Affiliation:
1. Departamento de Matemática y Ciencia de la Computación, Facultad de Ciencias, Universidad de Santiago de Chile, Casilla 307, Correo 2, 9160000 Santiago, Chile
2. Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, 7810000 Santiago, Chile
Abstract
Leta∈Lloc1(ℝ+)andk∈C(ℝ+)be given. In this paper, we study the functional equationR(s)(a*R)(t)-(a*R)(s)R(t)=k(s)(a*R)(t)-k(t)(a*R)(s), for bounded operator valued functionsR(t)defined on the positive real lineℝ+. We show that, under some natural assumptions ona(·)andk(·), every solution of the above mentioned functional equation gives rise to a commutative(a,k)-resolvent familyR(t)generated byAx=lim t→0+(R(t)x-k(t)x/(a*k)(t))defined on the domainD(A):={x∈X:lim t→0+(R(t)x-k(t)x/(a*k)(t))exists inX}and, conversely, that each(a,k)-resolvent familyR(t)satisfy the above mentioned functional equation. In particular, our study produces new functional equations that characterize semigroups, cosine operator families, and a class of operator families in between them that, in turn, are in one to one correspondence with the well-posedness of abstract fractional Cauchy problems.
Subject
Applied Mathematics,Analysis
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献