Whole-Genome Sequence Data Analysis of Anoxybacillus kamchatkensis NASTPD13 Isolated from Hot Spring of Myagdi, Nepal

Author:

Yadav Punam12ORCID,Sharma Shikha3ORCID,Bhattarai Tribikram2ORCID,Sreerama Lakshmaiah4ORCID,Prasad Gandham S.5ORCID,Sahni Girish6ORCID,Maharjan Jyoti1ORCID

Affiliation:

1. Molecular Biotechnology Unit, Nepal Academy of Science and Technology, Lalitpur, Nepal

2. Central Departments of Biotechnology, Tribhuvan University, Kirtipur, Nepal

3. Laboratory of Bacterial Genomics and Evolution, CSIR-Institute of Microbial Technology, Chandigarh, India

4. Department of Chemistry and Earth Sciences, Qatar University, Doha, Qatar

5. University of Hyderabad, Hyderabad, India

6. Institute of Microbial Technology, Chandigarh, India

Abstract

Anoxybacillus kamchatkensis NASTPD13 isolated from Paudwar hot spring of Myagdi, Nepal, upon morphological and biochemical analysis revealed to be Gram-positive, straight or slightly curved, rod-shaped, spore-forming, catalase, and oxidase-positive facultative anaerobes. It grows over a wide range of pH (5.0-11) and temperature (37-75°C), which showed growth in different reduced carbon sources such as starch raffinose, glucose, fructose, inositol, trehalose, sorbitol, mellobiose, and mannitol in aerobic conditions. Furthermore, the partial sequence obtained upon sequencing showed 99% sequence similarity in 16S rRNA gene sequence with A. kamchatkensis JW/VK-KG4 and was suggested to be Anoxybacillus kamchatkensis. Moreover, whole-genome analysis of NASTPD13 revealed 2,866,796 bp genome with a G+C content of 41.6%. Analysis of the genome revealed the presence of 102 RNA genes, which includes sequences coding for 19 rRNA and 79 tRNA genes. While the 16S rRNA gene sequence of strain NASTPD13 showed high similarity (>99%) to those of A. kamchatkensis JW/VK-KG4, RAST analysis of NASTPD13 genome suggested that A. kamchatkensis G10 is actually the closest neighbor in terms of sequence similarity. The genome annotation by RAST revealed various genes encoding glycoside hydrolases supporting that it can utilize several reduced carbon sources as observed and these genes could be important for carbohydrate-related industries. Xylanase pathway, particularly the genomic region encoding key enzymes for xylan depolymerization and xylose metabolism, further confirmed the presence of the complete gene in xylan metabolism. In addition, the complete xylose utilization gene locus analysis of NASTPD13 genome revealed all including D-xylose transport ATP-binding protein XylG and XylF, the xylose isomerase encoding gene XylA, and the gene XylB coding for a xylulokinase supported the fact that the isolate contains a complete set of genes related to xylan degradation, pentose transport, and metabolism. The results of the present study suggest that the isolated A. kamchatkensis NASTPD13 containing xylanase-producing genes could be useful in lignocellulosic biomass-utilizing industries where pentose polymers could also be utilized along with the hexose polymers.

Funder

CSIR-TWAS Sandwich Postgraduate Fellowship Program

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3