Optimization of Subway Advertising Based on Neural Networks

Author:

Sun Ling1ORCID,Yang Yanbin1ORCID,Fu Xuemei2ORCID,Xu Hao3ORCID,Liu Wei1ORCID

Affiliation:

1. College of Transport and Communications, Shanghai Maritime University, Shanghai 201306, China

2. School of Management, Shandong University, Shandong 250100, China

3. CCCC Third Harbor Consultants Co., Ltd., Shanghai 200032, China

Abstract

Subway advertising has become a regular part of our daily lives. Because the target audiences are high-level consumers, subway advertising can promote the return on investment. Such advertising has taken root in various countries and regions. However, a lack of appropriate oversight, a single-track operating mode of subway advertising, and unclear price standards significantly reduced the expected advertising effects and the reasonableness of advertising quotations. The shared biking services have gained a great amount of attention in the past few years. Besides, more citizens get involved in using public transportation, which provides a basis for analyzing subway passenger characteristics. First, we examined the use of shared bikes around subway stations to obtain the information on passengers’ age. Then, using daily passenger flow volume, transfer lines, and the original subway advertising quotes, we trained backpropagation neural networks and used the results to provide new quotations. Finally, we combined passenger age structure and different passenger groups’ preferences in every station to identify the most suitable advertisement type. Our goal was to make full use of transportation big data to optimize advertising quotations and advertisement selection for subway stations. We also proposed the using of electronic advertising board to help increase the subway advertising profits, decrease the financial pressure of operations, and boost the public transportation development.

Funder

Shanghai Philosophy and Social Science Planning Project

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3