Pipeline 3D Modeling Based on High-Definition Rendering Intelligent Calculation

Author:

Li Shao1ORCID,Zhou Yu1

Affiliation:

1. Guangdong Polytechnic of Industry and Commerce, Guangzhou 510510, China

Abstract

In the processing of panoramic video, projection mapping is a very critical step. The selection of the projection mapping format will affect the performance, transmission mode, and rendering mode of the panoramic video codec. Therefore, this article starts from the projection mapping format, analyzes the mapping process of the standard mapping format, and then proposes a method of rendering panoramic video in the projection mapping format. By analyzing the parallel design schemes of swarm intelligence algorithms under different granularities, this paper proposes a parallel swarm intelligence optimization algorithm design method and then designs and implements a parallel artificial bee colony algorithm. With the help of the ArcGIS Engine development platform, this paper defines the interface for data exchange. With the support of Multipatch format data in ArcGIS software, through secondary development, the three-dimensional pipeline automatic modeling module is established, and the pipeline model is automatically generated. The digital construction and visualization of the company play a driving role. Based on the understanding of the characteristics of the pipeline image itself, combined with the analysis of the shortcomings of the existing methods, this paper proposes a new deep learning-based high-definition rendering solution for the pipeline image. In this paper, the pipeline image is preprocessed, and then the processed pipeline image is converted into a style pipeline image through the pipeline image style transfer technology, and the obtained style pipeline image is postprocessed to enhance the effect. The preprocessing of pipeline images mainly includes pipeline image enhancement and pipeline image filtering operations. Its purpose is to change the distribution of pipeline images to improve the quality of pipeline images and make them more suitable for subsequent style conversion. In the part of pipeline image style conversion, this paper proposes a new deep learning-based pipeline image high-definition rendering network, which consists of three subnetworks: pipeline image feature modeling module, feature model alignment module, and pipeline image re-rendering module. This article has conducted sufficient experiments to fully compare the processing results of the method proposed in this article and other existing methods and at the same time shows the high-quality high-definition rendering results. The experimental results verify the excellent performance of the method proposed in this paper.

Funder

Youth Innovation project of Guangdong Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3