Expression of Nestin, Vimentin, and NCAM by Renal Interstitial Cells after Ischemic Tubular Injury

Author:

Vansthertem David1,Gossiaux Annabel1,Declèves Anne-Emilie2,Caron Nathalie3,Nonclercq Denis1,Legrand Alexandre2,Toubeau Gérard1

Affiliation:

1. Laboratory of Histology, Faculty of Medicine and Pharmacy, University of Mons, Avenue du Champ de Mars, 6 (Pentagone) 1B, 7000 Mons, Belgium

2. Laboratory of Physiology and Pharmacology, Faculty of Medicine and Pharmacy, University of Mons, 7000 Mons, Belgium

3. Laboratory of General Physiology, Faculty of Medicine, Facultés Universitaires Notre-Dame de la Paix, 5000 Namur, Belgium

Abstract

This work explores the distribution of various markers expressed by interstitial cells in rat kidneys after ischemic injury (35 minutes) during regeneration of S3 tubules of outer stripe of outer medulla (OSOM). Groups of experimental animals (n=4) were sacrificed every two hours during the first 24 hours post-ischemia as well as 2, 3, 7, 14 days post-ischemia. The occurrence of lineage markers was analyzed on kidney sections by immunohistochemistry and morphometry during the process of tubular regeneration. In postischemic kidneys, interstitial cell proliferation, assessed by 5-bromo-2-deoxyuridine (BrdU) and Proliferating Cell Nuclear Antigen (PCNA) labeling, was prominent in outer medulla and reach a maximum between 24 and 72 hours after reperfusion. This population was characterized by the coexpression of vimentin and nestin. The density of -Neural Cell Adhesion Molecule (NCAM) positive interstitial cells increased transiently (18–72 hours) in the vicinity of altered tubules. We have also localized a small population ofα-Smooth Muscle Actin (SMA)-positive cells confined to chronically altered areas and characterized by a small proliferative index. In conclusion, we observed in the postischemic kidney a marked proliferation of interstitial cells that underwent transient phenotypical modifications. These interstitial cells could be implicated in processes leading to renal fibrosis.

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Genetics,Molecular Biology,Molecular Medicine,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3