Effect of Mean Grain Size on the Small-Strain Dynamic Properties of Calcareous Sand

Author:

Wen Liwei123ORCID

Affiliation:

1. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin, Heilongjiang 150080, China

2. Key Laboratory of Earthquake Disaster Mitigation, Ministry of Emergency Management, Harbin, Heilongjiang 150080, China

3. School of Civil Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China

Abstract

Calcareous sand was selected as the prior material for island reclamation in many coastal regions. The mechanical properties of the granular materials are greatly affected by their grain size distribution conditions. The shear modulus and damping ratio are two important parameters for earthquake ground response analysis and liquefaction evaluation. A series of resonant column tests had been performed on calcareous sands with varying median grain diameter and uniform coefficient. The dependence of the shear modulus and damping ratio of the calcareous sand on grain size has been confirmed in this examination. The test results reveal that the shear modulus decreases with a rise in shear strain for calcareous sand samples at a given confining pressure and relative density. The maximum shear modulus tends to increase with confining pressure and relative density. On the maximum shear modulus and void ratio plane, the trend lines of the measured results shift toward up and right position with a rise in grain diameter. The measured results indicate that the influence of uniform coefficient on the maximum shear modulus is neglectable. A revised empirical equation based on the Hardin model had been proposed considering the influence of grain diameter to estimate the maximum shear modulus of calcareous sand. The predicted values show satisfactory agreement with the measured results. The results manifest that the effect of grading condition on small-strain dynamic properties of calcareous sands cannot be neglected for the evaluation of seismic safety for reclamation engineering sites.

Funder

China Earthquake Administration

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3