Minimally Modified LDL Upregulates Endothelin Type A Receptors in Rat Coronary Arterial Smooth Muscle Cells

Author:

Li Jie12,Cao Lei1ORCID,Xu Cang-Bao3,Wang Jun-Jie4,Cao Yong-Xiao1ORCID

Affiliation:

1. Department of Pharmacology, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi 710061, China

2. Department of Pharmacy, The First People’s Hospital of Chenzhou, Institute of Translational Medicine, Nanhua University, Chenzhou, Hunan 423000, China

3. Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, China

4. Department of Pharmacology, Xiangnan University, Chenzhou, Hunan 423000, China

Abstract

Minimally modified low-density lipoprotein (mmLDL) is a risk factor for cardiovascular disease. The present study investigated the effects of mmLDL on the expression of endothelin type A () receptors in coronary arteries. Rat coronary arteries were organ-cultured for 24 h. The contractile responses were recorded using a myographic system. receptor mRNA and protein expressions were determined using real-time PCR and western blotting, respectively. The results showed that organ-culturing in the presence of mmLDL enhanced the arterial contractility mediated by the receptor in a concentration-dependent and time-dependent manner. Culturing with mmLDL (10 μg/mL) for 24 h shifted the concentration-contractile curves toward the left significantly with increased of from control of and significantly increased receptor mRNA and protein levels. Inhibition of the protein kinase C, extracellular signal-related kinases 1 and 2 (ERK1/2), or NF-κB activities significantly attenuated the effects of mmLDL. The c-Jun N-terminal kinase inhibitor or the p38 pathway inhibitor, however, had no such effects. The results indicate that mmLDL upregulates the receptors in rat coronary arterial smooth muscle cells mainlyviaactivating protein kinase C, ERK1/2, and the downstream transcriptional factor, NF-κB.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3