Neuromorphic Vision Based Multivehicle Detection and Tracking for Intelligent Transportation System

Author:

Chen Guang12ORCID,Cao Hu3,Aafaque Muhammad2,Chen Jieneng4,Ye Canbo1,Röhrbein Florian2,Conradt Jörg5,Chen Kai1,Bing Zhenshan2,Liu Xingbo1,Hinz Gereon2,Stechele Walter6ORCID,Knoll Alois2

Affiliation:

1. College of Automotive Engineering, Tongji University, China

2. Robotics and Embedded Systems, Technische Universität München, Germany

3. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, China

4. College of Electronics and Information Engineering, Tongji University, China

5. Department of Computational Science and Technology, KTH Royal Institute of Technology, Sweden

6. Integrated Systems, Technische Universität München, Germany

Abstract

Neuromorphic vision sensor is a new passive sensing modality and a frameless sensor with a number of advantages over traditional cameras. Instead of wastefully sending entire images at fixed frame rate, neuromorphic vision sensor only transmits the local pixel-level changes caused by the movement in a scene at the time they occur. This results in advantageous characteristics, in terms of low energy consumption, high dynamic range, sparse event stream, and low response latency, which can be very useful in intelligent perception systems for modern intelligent transportation system (ITS) that requires efficient wireless data communication and low power embedded computing resources. In this paper, we propose the first neuromorphic vision based multivehicle detection and tracking system in ITS. The performance of the system is evaluated with a dataset recorded by a neuromorphic vision sensor mounted on a highway bridge. We performed a preliminary multivehicle tracking-by-clustering study using three classical clustering approaches and four tracking approaches. Our experiment results indicate that, by making full use of the low latency and sparse event stream, we could easily integrate an online tracking-by-clustering system running at a high frame rate, which far exceeds the real-time capabilities of traditional frame-based cameras. If the accuracy is prioritized, the tracking task can also be performed robustly at a relatively high rate with different combinations of algorithms. We also provide our dataset and evaluation approaches serving as the first neuromorphic benchmark in ITS and hopefully can motivate further research on neuromorphic vision sensors for ITS solutions.

Funder

German Research Foundation (DFG)

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3