Damage Identification by the Data Expansion and Substructuring Methods

Author:

Lee Eun-Taik1,Eun Hee-Chang2ORCID

Affiliation:

1. Department of Architectural Engineering, Chung-Ang University, Seoul, Republic of Korea

2. Department of Architectural Engineering, Kangwon National University, Chuncheon, Republic of Korea

Abstract

Structural damage can be detected by comparing the responses before and after the damage. The responses are transformed into curvature, strain, and stress, among others, which characterize the mechanical behavior of the structural members, and can be utilized as damage indices for damage detection. The damage of a truss structure can rarely be detected by the displacements only at nodes. This work investigates damage detection methods using the stress or stiffness variation rate of the truss element before and after the damage. This paper considers three different cases according to the number of measurement locations. If the complete responses at a full set of degrees of freedom are measured, the stiffness variation rates of the elements are calculated accurately, and the damage can be explicitly detected despite external noise. If the number of measured data points is fewer than the system order, the displacements are estimated by the data expansion method, and the damage-expected regions are predicted by the stiffness variation rates. Apart from the explicitly damaged elements, the substructuring approach is adopted for closer damage detection with several measurement sensors despite external noise. It is illustrated by the examples that three cases are compared numerically. The numerical examples compare and analyze the numerical results of the three cases.

Funder

Ministry of Education

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3