Study on Control of Wall Deflection in Earth Stepped-Twin Retaining Wall Using Anchor Method by means of Numerical Simulation

Author:

Maehara Kazuki1ORCID,Hamanaka Akihiro1ORCID,Sasaoka Takashi1,Shimada Hideki1ORCID,Sakuma Seiya2

Affiliation:

1. Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan

2. Aoyama Kiko Co., Ltd., Tokyo 110-0014, Japan

Abstract

The demand for specific earth retaining wall methods is increasing along with the advancement and overcrowding of underground space use such as the presence of adjacent structures in an urban area. To cope with this, the method named earth stepped-twin retaining wall is increasingly being applied. However, there is a concern about the workplace if the earth pressure causes a heaving and pressing phenomenon from both ends of the retaining wall in the earth stepped-twin retaining wall. Therefore, we proposed the application of an anchor method that contains the inner and outer walls by using numerical simulation. The effects of the difference in soil properties, the horizontal distance between the outer and inner walls, and the depth of the outer wall embedment on the anchor were investigated. The results of this study show that the wall deflection of the inner wall could improve by adopting the anchor support. Besides, it was found that the inner wall can be efficiently suppressed by adopting the hybrid system with anchors and struts according to the soil properties, horizontal distance, and the depth of the outer wall.

Funder

Obayashi Foundation

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3