A Deep Neural Network-Based Approach to Media Hotspot Discovery

Author:

Luo Pan1ORCID

Affiliation:

1. School of Art and Design, Zhengzhou University of Aeronautics, Zhengzhou, Henan 450046, China

Abstract

In recent years, with the rapid development of social network media, it has become a valuable research direction to quickly analyze these texts and find out the current hotspots from them in real time. To address this problem, this paper proposes a method to discover current hotspots by combining deep neural networks with text data. First, the text data features are extracted based on the graphical convolutional neural network, and the temporal correlation of numerical information is modeled using gated recurrent units, and the numerical feature vectors are fused with the text feature vectors. Then, the K-means algorithm is optimized for the initial point selection problem, and a clustering algorithm based on the maximum density selection method in the moving range is proposed. Finally, the text feature representation method based on graph convolutional neural network is combined with the clustering algorithm based on the moving range density maximum selection method to build a deep learning-based media hotspot discovery framework. The accuracy of the proposed media hotspot discovery method and the comprehensive evaluation of the computing time have been verified experimentally.

Funder

Science Foundation of Ministry of Education of China

Publisher

Hindawi Limited

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3