Investigating the Effect of Cooling Media on Hardness, Toughness, Coefficient of Friction, and Wear Rate of Mild Steel Heat Treated at Different Temperatures

Author:

Pita M.1ORCID,Lebea L.1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of South Africa, Johannesburg, South Africa

Abstract

Mild steel is a common material used extensively in the manufacturing industry. This manuscript investigates the effect of cooling processes on the hardness, toughness, coefficient of friction, and wear rate of mild steel heat treated at different temperatures. The material was heat treated in a furnace at two different temperatures (500 and 900°C) and cooled by water, oil, and air. Microhardness and impact tests were conducted using ASTM E384 and ASTM E23-12C. For dry conditions, the tribology ASTM G99 test standard was used to determine the coefficient of friction and wear rate per sample. The results show that mild steel heat treated at 900°C and cooled with water increased the material’s hardness by 24% and toughness by 23.3% as compared to oil- and air-cooling media. The same heating temperature and water-cooling media produce the material with a low wear rate (3.223E-008).

Funder

University of South Africa

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Reference17 articles.

1. Corrosion rates and its impact on mild steel in some selected environments;A. O. Umeozokwere;Journal of Scientific and Engineering Research,2016

2. Corrosion propagation challenges of mild steel in industrial operations and response to problem definition

3. Analysis of mechanical properties of mild steel applying various heat treatment;N. Sultana,2014

4. Corrosion behaviour of mild steel;D. Rao;International Journal of Research in Engineering and Science (IJRES) ISSN,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3