Deep Transfer Learning for Automatic Prediction of Hemorrhagic Stroke on CT Images

Author:

Rao B. Nageswara1ORCID,Mohanty Sudhansu2,Sen Kamal2,Acharya U. Rajendra345,Cheong Kang Hao6,Sabut Sukanta1ORCID

Affiliation:

1. School of Electronics Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar, India

2. Department of Radio-Diagnosis, Kalinga Institute of Medical Science, Bhubaneswar, India

3. School of Engineering, Ngee Ann Polytechnic, 535 Clementi Road, 599489, Singapore

4. Department of Biomedical Engineering, School of Science and Technology, SUSS University, 463 Clementi Road, 599491, Singapore

5. Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan

6. Science, Mathematics & Technology Cluster, Singapore University of Technology and Design, Singapore

Abstract

Intracerebral hemorrhage (ICH) is the most common type of hemorrhagic stroke which occurs due to ruptures of weakened blood vessel in brain tissue. It is a serious medical emergency issues that needs immediate treatment. Large numbers of noncontrast-computed tomography (NCCT) brain images are analyzed manually by radiologists to diagnose the hemorrhagic stroke, which is a difficult and time-consuming process. In this study, we propose an automated transfer deep learning method that combines ResNet-50 and dense layer for accurate prediction of intracranial hemorrhage on NCCT brain images. A total of 1164 NCCT brain images were collected from 62 patients with hemorrhagic stroke from Kalinga Institute of Medical Science, Bhubaneswar and used for evaluating the model. The proposed model takes individual CT images as input and classifies them as hemorrhagic or normal. This deep transfer learning approach reached 99.6% accuracy, 99.7% specificity, and 99.4% sensitivity which are better results than that of ResNet-50 only. It is evident that the deep transfer learning model has advantages for automatic diagnosis of hemorrhagic stroke and has the potential to be used as a clinical decision support tool to assist radiologists in stroke diagnosis.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3