Vegetation Effects on Bacteria and Denitrifier Abundance in the Soils of Two Tidal Freshwater Wetlands in Virginia

Author:

Morina Joseph C.1,Morrissey Ember M.2,Franklin Rima B.1ORCID

Affiliation:

1. Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA

2. Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26505, USA

Abstract

This study examined the abundance of bacteria and nirS-type denitrifiers associated with the rhizospheres of three emergent macrophyte species (Juncus effusus, Typha latifolia, and Peltandra virginica) to gain a greater understanding of plant-microbe interactions in wetland soils. Sampling of plant and soil properties was performed during the growing season (June) and following plant senescence (November) at two tidal freshwater wetlands. Quantitative polymerase chain reaction was used to determine the abundance of bacteria (16S rRNA) and nirS-type denitrifier genes from the rhizosphere and rhizoplane of each plant species and from nearby unvegetated soils. For bacteria, there was a positive rhizosphere effect that did not differ significantly across plant species. In contrast, significant differences in the abundance of nirS-type denitrifiers were observed across the plant species. Rhizosphere abundance was ∼2-fold greater in Peltandra virginica and 4-fold greater in Typha latifolia compared to Juncus effusus. For both bacteria and nirS-type denitrifiers, plant effects were greater during the growing season, and abundance was highly correlated with soil pH, moisture, and organic matter content. Overall, these results demonstrate plant effects on the rhizosphere microbial community can be species‐specific and that there is a synergistic relationship between plant species and environmental conditions.

Funder

Undergraduate Research Opportunities Program (UROP)

Publisher

Hindawi Limited

Subject

Earth-Surface Processes,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3