Numerical and Analytical Calculations for Modeling and Designing Drilling Wicks or Rotary Cutters Based of Functionally Graded Materials

Author:

Ngueyep Luc Leroy Mambou12ORCID,Ndop Joseph13,Nkene Elise Rose Atangana34,Ndjaka Jean-Marie Bienvenu1ORCID

Affiliation:

1. Laboratory of Material Sciences, Department of Physics, Faculty of Sciences, University of Yaoundé 1, P.O. BOX 812, Yaoundé, Cameroon

2. Department of Mine, Mineral Processing and Environment, School of Geology and Mining Engineering, University of Ngaoundéré, P.O. BOX 115, Meiganga, Cameroon

3. Douala Institute of Technology, P.O. BOX, 1623 Douala, Cameroon

4. Department of Physics, Faculty of Sciences, University of Douala, P.O. BOX 24157, Douala, Cameroon

Abstract

Drilling tools or drilling pipes, such as drill bit and mill drill, are often subjected to various forces, including essentially tangential forces, centered on their axis of rotation. The main objective of this work is to find analytical and numerical solutions of the distribution of stress field, deformation, and displacement, when such tools are subjected to such forces. It will be assumed that the instrument in the chosen model in this work is a rotating hollow cylinder constructed from a Functional Graded Material (FGM). Because of the graduation of the FGM, the mechanical and elastic properties such as Young’s modulus, density, and Poisson’s ratio vary in the radial direction according to a power law function. By choosing that the inhomogeneity parameter is between -0.5 and 0.5, we have established the differential equation which describes the equilibrium of the hollow cylinder in rotation under an axial load. The calculations performed have allowed finding an analytical solution which was compared with numerical solutions obtained by using the shooting method and the fourth-order Runge-Kutta algorithm. These analytical and numerical results have shown that the values of tangential stresses are greater than the radial stresses. The radial stresses and tangential and vertical stresses progressively increase with the axial force Fz. The force Fz affects more tangential stresses that the radial stresses. The tangential stress, tangential deformations, and displacements are higher on the inner walls of the cylinder than on the exterior surfaces. The results obtained are very important and can be applied in the modeling and designing wicks and drilling strawberries in order to reduce their rapid wear and damage.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3