Microscopic Characteristics of Fractured Sandstone after Cyclic Freezing-Thawing and Triaxial Unloading Tests

Author:

Ni Xiaohui12ORCID,Shen Xiaomei1,Zhu Zhende2

Affiliation:

1. College of Civil Engineering and Architecture, Jiaxing University, Jiaxing 314001, China

2. Geotechnical Research Institute of Hohai University, Hohai University, Nanjing 210098, China

Abstract

The understanding of tunneling rock failure characteristics under unloading conditions in the cold region is critical for the proper design of rock tunneling support and mining safety operation. Given this understanding is currently limited, this study aimed to investigate the characteristics of fractured sandstone samples in the microscale after cyclic freezing-thawing and triaxial unloading tests. The samples were first subjected to different cycles of freezing and thawing, followed by the triaxial unloading test and scanning electron microscopy imaging. The peak strength and damage dilatancy stress were measured from the stress-strain curves. The microcrack characteristics (number, length, and width) were obtained through the image analysis. The results show that the decrease in peak strength and damage dilatancy stress was more significant by the first 20 freezing-thawing cycles when the pore pressure gradient is maximum compared to the later freezing-thawing cycles. The mechanical properties also significantly deteriorated when the severe freezing-thawing treatments were performed. The fracture section mainly had the morphology of honeycomb-like microstructure, stripped microstructure, and flocculent microstructure. The cracking extent was mainly influenced by the freezing-thawing rather than the triaxial unloading test, but the azimuthal angle of microcracks was significantly altered by the triaxial unloading. To properly design rock tunneling support and safe operation of mining in the cold region, both impact of cyclic freezing-thawing and the excavation operation direction should be considered.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3