Investigation on Fluid Flow Heat Transfer and Frictional Properties of Al2O3 Nanofluids Used in Shell and Tube Heat Exchanger

Author:

Barik Debabrata1ORCID,Chandran Sreejesh S. R.2ORCID,Dennison Milon Selvam3ORCID,Raj T. G. Ansalam4ORCID,Roy K. E. Reby5ORCID

Affiliation:

1. Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, India

2. Department of Mechanical Engineering, Eranad Knowledge City Technical Campus, Manjeri, Malappuram, Kerala 676122, India

3. Department of Mechanical Engineering, Kampala International University, Western Campus, Kampala, 20000, Uganda

4. Department of Mechanical Engineering, Valia koonambaikulathamma College of Engineering and Technology, Kollam, Kerala 691574, India

5. Space Technology Laboratory, Department of Mechanical Engineering, TKM College of Engineering, Kollam, Kerala 691005, India

Abstract

Nanofluids are generally utilized in providing cooling, lubrication phenomenon, and controlling the thermophysical properties of the working fluid. In this paper, nanoparticles of Al2O3 are added to the base fluid, which flows through the counterflow arrangement in a turbulent flow condition. The fluids employed are ethylbenzene and water, which have differing velocities on both the tube and the shell side of the cylinders. A shell tube-type heat exchanger is used to examine flow characteristics, friction loss, and energy transfer as they pertain to the transmission of thermal energy. The findings of the proposed method showed that the efficiency of a heat exchanger could be significantly improved by the number, direction, and spacing of baffles. With the inclusion of nanoparticles of 1% volume, the flow property, friction property, and heat transfer rate can be considerably improved. As a result, the Nusselt number and Peclet numbers have been increased to 261 and 9.14 E +5. For a mass flow rate of 0.5 kg/sec, the overall heat transfer coefficient has also been increased to a maximum value of 13464. The heat transfer rate of the present investigation with nanoparticle addition is 4.63% higher than the Dittus–Boelter correlation. The friction factor is also decreased by about 17.5% and 11.9% compared to the Gnielinski and Blasius correlation. The value of the friction factor for the present investigation was found to be 0.0376. It is hence revealed that a suitable proportion of nanoparticles along with the base fluids can make remarkable changes in heat transfer and flow behavior of the entire system.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3