Contaminant Delineation of a Landfill Site Using Electrical Resistivity and Induced Polarization Methods in Alice, Eastern Cape, South Africa

Author:

Mepaiyeda S.1ORCID,Madi K.2,Gwavava O.1,Baiyegunhi C.3,Sigabi L.1

Affiliation:

1. Department of Geology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa

2. School of Biology and Environmental Sciences, University of Mpumalanga, Private Bag X11283, Mbombela, 1200, Mpumalanga, South Africa

3. Department of Geology and Mining, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa

Abstract

A combination of electrical resistivity and induced polarization methods were applied to a solid waste landfill in Alice, Eastern Cape, South Africa to delineate the lithologic layers and locate possible leachate plumes. Resistivity and IP data were collected along six profiles; VES on two and the dipole-dipole configuration was used in the rest four. The result shows a 4-layered earth system with a shallow depth to the top of the bedrock (<10 m). Contaminants ranging from unsaturated waste with high ion content to dense aqueous phase liquid contaminants, characterized by low resistivity (34–80 Ohm-m) and low chargeability values (0.05–5.75 ms). The contamination was interpreted based on resistivity/IP anomalies considering the background geology. The shallow bedrock indicated a low risk to groundwater contamination because of its competent nature from its geology, and characteristic high resistivity values (≥1000 Ohm-m). However, the steep nature of the landfill terrain due to its location at the foot of a vertical slope favours the rapid migration of the contaminants into the immediate vicinity of the landfill. The construction of containment structures such as waste cells will help in enhancing effective waste management practices in the landfill.

Publisher

Hindawi Limited

Subject

Geophysics,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3