Affiliation:
1. National Electronics and Computer Technology Center (NECTEC), NSTDA, 112 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
Abstract
Nowadays, the simplicity of both designing and fabrication process of a terahertz (THz) resonator-based sensing technique leads to its ongoing development. The consumable THz resonator needs to be easily integrated into an existing terahertz time domain spectroscopy (THz TDS) measurement system. It should also be able to be fabricated in a mass scale with a low production cost. In this work, a metal-coated surface plasmon resonance- (SPR-) based sensor is simulated and designed as a low-cost refractive index sensor utilizing rigorous coupled wave analysis (RCWA). To demonstrate our methodology, we design a gold-coated grating with a polydimethylsiloxane (PDMS) as a substrate, in order to perform quantitative analysis of gasoline-toluene mixture composition, which has a refraction index variation of 0.1 at THz frequency. The grating period is tuned such that its surface plasmon resonance (SPR) frequency matches with the peak frequency of the THz TDS system. Moreover, other grating parameters, i.e., a filling factor and a grating depth, are optimized to increase the sensor sensitivity and sharpen the resonance dip. High sensitivity up to 500 GHz/RIU with a refractive index resolution up to 0.01 is numerically revealed. The H-field of the designed grating is then evaluated to indicate a strong SPR excitation. The well-developed designed grating introduces a promising, low-cost, and easily fabricated THz refractive index sensor.
Funder
National Electronics and Computer Technology Center
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献