Carbon Nanomaterial Manufacturing System and Automatic Synthesis Equipment and Its Control Device and Control Methods

Author:

Lou Gaoxiang1ORCID,Cai Zongyan1

Affiliation:

1. School of Construction Machinery, Chang’an University, Xi’an, Shannxi 710064, China

Abstract

In recent years, people are committed to developing new technologies and technologies for energy storage and conversion, environmental detection, high-performance sensors and energy security, and other aspects of the increasingly prominent problems in the field of environmental and biosafety. The purpose of this paper is to explore the manufacturing system and automatic synthesis equipment of carbon nanomaterials, understand the control device and control method, and analyze the structure and morphology characteristics of three kinds of carbon nanomaterials produced by carbon nanomaterial manufacturing system by X-ray diffraction and infrared spectroscopy. The results show that the carbon nanomaterial manufacturing system and automatic synthesis system in this paper solve the problems of high cost, low efficiency, and small scale of the existing carbon nanomaterials manufacturing and achieve the precision control of automatic production, so that the productivity is increased by 20%–35%, and the cost is reduced by 15%–30%. Therefore, they are widely used in the fields of science and technology, environmental protection, and intelligent manufacturing broad prospects. Carbon nanotube manufacturing equipment and automatic synthesis equipment have great production advantages, which can greatly improve the quality and efficiency of carbon nanomaterials. UPY, GO, and UGO carbon nanomaterials produced by carbon nanotube manufacturing equipment are not easy to fall off from the materials. When the wavelength is 500 nm, the absorption frequency of the three materials is the largest. With the extension of the spectral wavelength, the absorption frequency of the three materials is reduced by 52%, 33%, and 34.7%, respectively.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Chemistry

Reference25 articles.

1. Carbon Nanomaterial-Phosphomolybdate Composites for Oxidative Electrocatalysis

2. IMAPS-CPMT 2014 Poland – Circuit World

3. Ferritin-mixed solution plasma system yielding low-dimensional carbon nanomaterials and their application to flexible conductive paper

4. Manufacturing of electric double‐layer capacitors using carbon nanocoils and evaluation of their specific capacitances at a high scan rate;H. Izumi;Electronics & Communications in Japan,2016

5. ZnO nanostructures in enzyme biosensors

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3