A Smart Surveillance System for Uncooperative Gait Recognition Using Cycle Consistent Generative Adversarial Networks (CCGANs)

Author:

Alsaggaf Wafaa Adnan1ORCID,Mehmood Irfan2ORCID,Khairullah Enas Fawai1ORCID,Alhuraiji Samar3ORCID,Sabir Maha Farouk S.4ORCID,Alghamdi Ahmed S.5ORCID,Abd El-Latif Ahmed A.6ORCID

Affiliation:

1. Department of Information Technology, Faculty of Computing and Information Technology King Abdulaziz University, Jeddah 23713, Saudi Arabia

2. Faculty of Engineering & Informatics, School of Media, Design and Technology, University of Bradford, Bradford, UK

3. Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia

4. Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia

5. Department of Cybersecurity, Faculty of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia

6. Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shibin Al Kawm 32511, Egypt

Abstract

Surveillance remains an important research area, and it has many applications. Smart surveillance requires a high level of accuracy even when persons are uncooperative. Gait Recognition is the study of recognizing people by the way they walk even when they are unwilling to cooperate. It is another form of a behavioral biometric system in which unique attributes of an individual’s gait are analyzed to determine their identity. On the other hand, one of the big limitations of the gait recognition system is uncooperative environments in which both gallery and probe sets are made under different and unknown walking conditions. In order to tackle this problem, we propose a deep learning-based method that is trained on individuals with the normal walking condition, and to deal with an uncooperative environment and recognize the individual with any dynamic walking conditions, a cycle consistent generative adversarial network is used. This method translates a GEI disturbed from different covariate factors to a normal GEI. It works like unsupervised learning, and during its training, a GEI disrupts from different covariate factors of each individual and acts as a source domain while the normal walking conditions of individuals are our target domain to which translation is required. The cycle consistent GANs automatically find an individual pair with the help of the Cycle Loss function and generate the required GEI, which is tested by the CNN model to predict the person ID. The proposed system is evaluated over a publicly available data set named CASIA-B, and it achieved excellent results. Moreover, this system can be implemented in sensitive areas, like banks, seminar halls (events), airports, embassies, shopping malls, police stations, military areas, and other public service areas for security purposes.

Funder

Institutional Fund Projects

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3