DAGAN: A Domain-Aware Method for Image-to-Image Translations

Author:

Yin Xu1ORCID,Li Yan1,Shin Byeong-Seok1ORCID

Affiliation:

1. Department of Computer Engineering, Inha University, Incheon 082, Republic of Korea

Abstract

The image-to-image translation method aims to learn inter-domain mappings from paired/unpaired data. Although this technique has been widely used for visual predication tasks—such as classification and image segmentation—and achieved great results, we still failed to perform flexible translations when attempting to learn different mappings, especially for images containing multiple instances. To tackle this problem, we propose a generative framework DAGAN (Domain-aware Generative Adversarial etwork) that enables domains to learn diverse mapping relationships. We assumed that an image is composed with background and instance domain and then fed them into different translation networks. Lastly, we integrated the translated domains into a complete image with smoothed labels to maintain realism. We examined the instance-aware framework on datasets generated by YOLO and confirmed that this is capable of generating images of equal or better diversity compared to current translation models.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3