A Liver Damage Prediction Using Partial Differential Segmentation with Improved Convolutional Neural Network

Author:

Sumathy B.1,Dadheech Pankaj2ORCID,Jain Monika3,Saxena Ankur4ORCID,Hemalatha S.5,Liu Wenqi6,Nuagah Stephen Jeswinde7ORCID

Affiliation:

1. Department of Instrumentation and Control Engineering, Sri Sairam Engineering College, Chennai, India

2. Department of Computer Science & Engineering, Swami Keshvanand Institute of Technology, Management & Gramothan, Jaipur, Rajasthan, India

3. Department of Electronics & Communication Engineering, ITS Engineering College, Greater Noida, Uttar Pradesh, India

4. Indus Institute of Information & Communication Technology, Indus University, Ahmedabad, Gujarat, India

5. Department of Computer Science and Engineering, Panimalar Institute of Technology, Chennai, Tamil Nadu, India

6. Henan Chuitian Technology Co., LTD, Hebi 458000, China

7. Department of Electrical Engineering, Tamale Technical University, Tamale, Ghana

Abstract

Background. The liver is one of the most significant and most essential organs in the human body. It is divided into two granular lobes, one on the right and one on the left, connected by a bile duct. The liver is essential in the removal of waste products from human food consumption, the creation of bile, the regulation of metabolic activities, the cleaning of the blood by sensitizing digestive management, and the storage of vitamins and minerals. To perform the classification of liver illnesses using computed tomography (CT scans), two critical phases must first be completed: liver segmentation and categorization. The most difficult challenge in categorizing liver disease is distinguishing the liver from the other organs near it. Methodology. Liver biopsy is a kind of invasive diagnostic procedure, widely regarded as the gold standard for accurately estimating the severity of liver disease. Noninvasive approaches for examining liver illnesses, such as blood serum markers and medical imaging (ultrasound, magnetic resonance MR, and CT) have also been developed. This approach uses the Partial Differential Technique (PDT) to separate the liver from the other organs and Level Set Methodology (LSM) for separating the cancer location from the surrounding tissue based on the projected pictures used as input. With the help of an Improved Convolutional Classifier, the categorization of different phases may be accomplished. Results. Several accuracies, sensitivity, and specificity measurements are produced to assess the categorization of LSM using an Improved Convolutional classifier. Approximately, 97.5% of the performance accuracy of the liver categorization is achieved with a 94.5% continuous interval (CI) of [0.6775 1.0000] and an error rate of 2.1%. The suggested method’s performance is compared to that of two existing algorithms, and the sensitivity and specificity provide an overall average of 96% and 93%, respectively, with 95% Continuous Interval of [0.7513 1.0000] and [0.7126 1.0000] for sensitivity and specificity, respectively.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-testing Algorithm of Metro One-button Switch Station Equipment Based on a Neural Network;Journal of Physics: Conference Series;2024-05-01

2. Optimized Deep Learning Model for Disease Prediction in Potato Leaves;EAI Endorsed Transactions on Pervasive Health and Technology;2023-09-27

3. Transfer Learning-Based Methods for Prediction of Liver & Heart Diseases: A Review;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3