Performance Evaluation of Two ANFIS Models for Predicting Water Quality Index of River Satluj (India)

Author:

Tiwari Sharad1ORCID,Babbar Richa2ORCID,Kaur Gagandeep1

Affiliation:

1. Department of Electrical and Instrumentation Engineering, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India

2. Department of Civil Engineering, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India

Abstract

Water quality index is the most convenient way of communicating water quality status of water bodies, but its evaluation requires subjectivity in terms of user involvement and dealing with uncertainty. Recently, artificial intelligence algorithms that are appropriate for nonlinear forecasting and also dealing with uncertainties have been applied to various domains of water quality forecasting. This paper focuses on development of a data-driven adaptive neurofuzzy system for the water quality index using a real data set obtained from eight different monitoring stations across River Satluj in northern India. Novelty in the paper lies in the estimation of water quality index using two different clustering techniques: fuzzy C-means and subtractive clustering-based ANFIS and assessing their predictive accuracy. Each model was used to train, validate, and test the index that was obtained from seven water quality parameters including pH, conductivity, chlorides, nitrates, ammonia, and fecal coliforms. The models were evaluated on the basis of statistical performance criteria. Based on the evaluations, it was found that the SC-ANFIS method gave more accurate result as compared to the FCM-ANFIS. The tested model, SC-ANFIS model, was further used to identify those sensitive parameters across various monitoring stations that were capable of causing change in the existing water quality index value.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3