Review of Recent Development on Preparation, Properties, and Applications of Cellulose-Based Functional Materials

Author:

Li Ya-Yu123ORCID,Wang Bin1,Ma Ming-Guo1ORCID,Wang Bo1

Affiliation:

1. Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China

2. College of Chemical Engineering, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China

3. Xinjiang Blue Ridge Tunhe Profiles Co., Ltd., Changji, Xinjiang 831100, China

Abstract

Cellulose is the most abundant biomass resource in the world. It can be transferred to various water soluble derivatives, biochemicals, and materials. In the second half of the 20th century, nanocellulose was extracted with unique properties such as optical transparency, high strength, and high surface area. These new forms of cellulose can be combined with other materials, mainly biopolymers, to form multifarious composites, which are used in all applications of human life. For convenience, to introduce the recent development of these cellulose-based functional composites, we divided them to seven categories, including biological applications, water treatment, sensor, reinforcing agent, energy storage materials, Pickering emulsion stabilizer, and other versatile applications. The preparation, properties, and applications of these functional composites were depicted.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3