Rapid Screening of Volatile Organic Compounds from Aframomum danielli Seeds Using Headspace Solid Phase Microextraction Coupled to Gas Chromatography Mass Spectrometry

Author:

George Mosotho J.12ORCID,Njobeh Patrick B.3,Gbashi Sefater3,Adegoke Gabriel O.34,Dubery Ian A.2,Madala Ntakadzeni E.2ORCID

Affiliation:

1. Department of Chemistry and Chemical Technology, National University of Lesotho, Roma 180, Lesotho

2. Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa

3. Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa

4. Department of Food Technology, University of Ibadan, Ibadan, Nigeria

Abstract

Volatile organic compounds (VOCs) derived from plants have been used in the fragrance industry since time immemorial. Herein we report on the rapid screening of VOCs from seeds of ripe Aframomum danielli (family, Zingiberaceae) using a polydimethylsiloxane fibre headspace solid phase microextraction coupled to a gas chromatography mass spectrometry (SPME-GC/MS) instrument. Portions of 0.25, 0.35, and 0.50 g of ground sample were weighed and extraction of volatile organic compounds (VOCs) was achieved using a 100 μm polydimethylsiloxane solid phase microextraction (PDMS SPME) fibre, with the equilibrium time of 40 minutes and extraction temperature of 50°C; the following compounds with their respective relative abundances were obtained as the top ten most abundant and annotated ones using NIST, Wiley, and Fragrances Libraries: eucalyptol (58%); β-pinene (22%); α-pinene (7.5%); α-terpineol (4%), α-terpinyl acetate (2%); α-bergamotene (1%); pinocarveol (0.39%); α-copaene (0.35%); caryophyllene (0.34); and β-bisabolene (0.31%). These compounds have been reported elsewhere in the literature and listed in the Fragrances Library, incorporated into the Saturn QP2020 GCMS Solution® software used for their analysis.

Funder

University of Johannesburg

Publisher

Hindawi Limited

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3