The Fusion of Multi-Focus Images Based on the Complex Shearlet Features-Motivated Generative Adversarial Network

Author:

Wang Lei1ORCID,Liu ZhouQi1ORCID,Huang Jin1ORCID,Liu Cong1ORCID,Zhang LongBo1ORCID,Liu ChunXiang2ORCID

Affiliation:

1. School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China

2. Anhui Key Laboratory of Plant Resources and Plant Biology, Huaibei Normal University, Huaibei 235000, China

Abstract

The traditional methods for multi-focus image fusion, such as the typical multi-scale geometric analysis theory-based methods, are usually restricted by sparse representation ability and the transferring efficiency of the fusion rules for the captured features. Aiming to integrate the partially focused images into the fully focused image with high quality, the complex shearlet features-motivated generative adversarial network is constructed for multi-focus image fusion in this paper. Different from the popularly used wavelet, contourlet, and shearlet, the complex shearlet provides more flexible multiple scales, anisotropy, and directional sub-bands with the approximate shift invariance. Therefore, the features in complex shearlet domain are more effective. With of help of the generative adversarial network, the whole procedure of multi-focus fusion is modeled to be the process of adversarial learning. Finally, several experiments are implemented and the results prove that the proposed method outperforms the popularly used fusion algorithms in terms of four typical objective metrics and the comparison of visual appearance.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3