Affiliation:
1. School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China
2. Anhui Key Laboratory of Plant Resources and Plant Biology, Huaibei Normal University, Huaibei 235000, China
Abstract
The traditional methods for multi-focus image fusion, such as the typical multi-scale geometric analysis theory-based methods, are usually restricted by sparse representation ability and the transferring efficiency of the fusion rules for the captured features. Aiming to integrate the partially focused images into the fully focused image with high quality, the complex shearlet features-motivated generative adversarial network is constructed for multi-focus image fusion in this paper. Different from the popularly used wavelet, contourlet, and shearlet, the complex shearlet provides more flexible multiple scales, anisotropy, and directional sub-bands with the approximate shift invariance. Therefore, the features in complex shearlet domain are more effective. With of help of the generative adversarial network, the whole procedure of multi-focus fusion is modeled to be the process of adversarial learning. Finally, several experiments are implemented and the results prove that the proposed method outperforms the popularly used fusion algorithms in terms of four typical objective metrics and the comparison of visual appearance.
Funder
National Natural Science Foundation of China
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献