The Application of Data Mining Technology to Build a Forecasting Model for Classification of Road Traffic Accidents

Author:

Shiau Yau-Ren1,Tsai Ching-Hsing1,Hung Yung-Hsiang2ORCID,Kuo Yu-Ting2

Affiliation:

1. Department of Industrial Engineering and System Management, Feng Chia University, No. 100 Wenhua Road, Taichung 40724, Taiwan

2. Department of Industrial Engineering and Management, National Chin-Yi University of Technology, No. 57, Section 2, Zhongshan Road, Taiping District, Taichung 41170, Taiwan

Abstract

With the ever-increasing number of vehicles on the road, traffic accidents have also increased, resulting in the loss of lives and properties, as well as immeasurable social costs. The environment, time, and region influence the occurrence of traffic accidents. The life and property loss is expected to be reduced by improving traffic engineering, education, and administration of law and advocacy. This study observed 2,471 traffic accidents which occurred in central Taiwan from January to December 2011 and used the Recursive Feature Elimination (RFE) of Feature Selection to screen the important factors affecting traffic accidents. It then established models to analyze traffic accidents with various methods, such as Fuzzy Robust Principal Component Analysis (FRPCA), Backpropagation Neural Network (BPNN), and Logistic Regression (LR). The proposed model aims to probe into the environments of traffic accidents, as well as the relationships between the variables of road designs, rule-violation items, and accident types. The results showed that the accuracy rate of classifiers FRPCA-BPNN (85.89%) and FRPCA-LR (85.14%) combined with FRPCA is higher than that of BPNN (84.37%) and LR (85.06%) by 1.52% and 0.08%, respectively. Moreover, the performance of FRPCA-BPNN and FRPCA-LR combined with FRPCA in classification prediction is better than that of BPNN and LR.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3