Effects of Yellow Light on Airborne Microbial Composition and on the Transcriptome of Typical Marker Strain in Ward

Author:

Zhao Xuanqi12,Wei Jing2,Chen Wenjie3,Xu Xuan4,Zhu Ruizhe2,Tian Puyuan5ORCID,Chen Tingtao12ORCID

Affiliation:

1. School of Life Science, Nanchang University, Nanchang, China

2. National Engineering Research Center for Bioengineering Drugs And The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China

3. Queen Mary School, Nanchang University, Nanchang, China

4. Huankui Academy, Nanchang University, Nanchang, China

5. Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong, China

Abstract

Airborne diseases are transmitted by pathogens in the air. The complex microbial environment in wards is usually considered a major cause of nosocomial infection of various diseases which greatly influences the health of patients with chronic diseases, whereas the illuminant of wards impacts on the microbe especially the disease marker strain is seldom studied. In the present study, high-throughput sequencing was used to study the effect of yellow light on airborne microbial composition, and changes of transcriptome of marker strains Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa, which were isolated from wards, were further studied after the irradiation by yellow light. High-throughput sequencing results indicated that yellow light significantly decreased α-diversity. The relative abundance of Firmicutes at the phylum level, and Clostridium sensu stricto 1, Paraclostridium at the genus level were significantly reduced. RNA sequencing results declared that yellow light significantly downregulated the genes associated with flagella, heme transport system and carbohydrate, amino acid metabolism in E. coli, and the genes related to arginine biosynthesis and the biosynthesis of isoleucine, leucine, and valine in S. aureus. Meanwhile, yellow light significantly upregulated the genes relating to porphyrin metabolism in P. aeruginosa. In conclusion, our work reveals the impacts of yellow light on the microbe in wards, pointing out the application value of yellow light in the prevention of infectious diseases in clinical practice.

Funder

Double Thousand Plan of Jiangxi Province

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3