Analytical Solutions of Fractional Walter’s B Fluid with Applications

Author:

Al-Mdallal Qasem1ORCID,Abro Kashif Ali2ORCID,Khan Ilyas3

Affiliation:

1. Department of Mathematical Sciences, UAE University, P.O. Box 15551, Al Ain, UAE

2. Department of Basic Sciences and Related Studies, Mehran University of Engineering Technology, Jamshoro, Pakistan

3. Basic Engineering Sciences Department, College of Engineering, Majmaah University, Al Majmaah, Saudi Arabia

Abstract

Fractional Walter’s Liquid Model-B has been used in this work to study the combined analysis of heat and mass transfer together with magnetohydrodynamic (MHD) flow over a vertically oscillating plate embedded in a porous medium. A newly defined approach of Caputo-Fabrizio fractional derivative (CFFD) has been used in the mathematical formulation of the problem. By employing the dimensional analysis, the dimensional governing partial differential equations have been transformed into dimensionless form. The problem is solved analytically and solutions of mass concentration, temperature distribution, and velocity field are obtained in the presence and absence of porous and magnetic field impacts. The general solutions are expressed in the format of generalized Mittag-Leffler function MΩ2,Ω3Ω1χ and Fox-H function Hp,q+11,p satisfying imposed conditions on the problem. These solutions have combined effects of heat and mass transfer; this is due to free convections differences between mass concentration and temperature distribution. Graphical illustration is depicted in order to bring out the effects of various physical parameters on flow. From investigated general solutions, the well-known previously published results in the literature have been recovered. Graphs are plotted and discussed for rheological parameters.

Funder

United Arab Emirates University

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3