Affiliation:
1. Department of Structural Engineering, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil
Abstract
A numerical procedure is presented to avoid the divergence problem during the iterative process in viscoelastic analyses. This problem is observed when the positional formulation of the finite element method is adopted in association with the finite difference method. To do this, the nonlinear positional formulation is presented considering plane frame elements with Bernoulli–Euler kinematics and viscoelastic behavior. The considered geometrical nonlinearity refers to the structural equilibrium analysis in the deformed position using the Newton–Raphson iterative method. However, the considered physical nonlinearity refers to the description of the viscoelastic behavior through the adoption of the stress-strain relation based on the Kelvin–Voigt rheological model. After the presentation of the formulation, a detailed analysis of the divergence problem in the iterative process is performed. Then, an original numerical procedure is presented to avoid the divergence problem based on the retardation time of the adopted rheological model and the penalization of the nodal position correction vector. Based on the developments and the obtained results, it is possible to conclude that the presented formulation is consistent and that the proposed procedure allows for obtaining the equilibrium positions for any time step value adopted without presenting divergence problems during the iterative process and without changing the analysis of the final results.
Funder
Fundação de Amparo à Pesquisa do Estado de Minas Gerais
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献