Media Information Dissemination Model of Wireless Networks Using Deep Residual Network

Author:

Lv Xiaojing1ORCID,Chun Dongphil1

Affiliation:

1. Graduate School of Management of Technology, Pukyong National University, Busan 48547, Republic of Korea

Abstract

Information dissemination and its prediction in wireless networks is a challenging task. Researchers have studied the prediction process of media information dissemination in wireless networks using various methods. In this paper, we analyze information dissemination in wireless networks using a deep residual network model. In the proposed model, the relative weight of nodes and the dissemination probability of media information in wireless networks are obtained. The obtained information is the inputs into the deep residual network as features. The convolution feature extractor is used to obtain the details of the input features. Finally, the propagation information is classified according to the extracted features through the full connection layer. We have used the SELU activation function to optimize the deep residual network. In this way, a complete media information dissemination prediction of wireless networks is obtained. The simulation results show that the proposed model has fast convergence and a low bit error rate of information dissemination. It reflects the characteristics of media information dissemination in a wireless network in real-time applications. The results show accurate prediction of media information dissemination in wireless networks.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3