HRM: An Intelligent Helmet Recognition Model in Complex Scenes

Author:

He Panbo1ORCID,Wu Chunxue1ORCID,Yared Rami2,Ma Yuanhao3

Affiliation:

1. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

2. School of Computer Science, Arab International University, Damascus 999099, Syria

3. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China

Abstract

This paper presents an intelligent helmet recognition model in complex scenes based on YOLOv5. Firstly, in construction site projects, consider that the photograph which needs to be identified has numerous problems. For example, helmet’s pixels are too tiny to detect, or a large number of workers makes helmets appear densely. A SE-Net channel attention module is added in different parts of the network layer of the model, so that the improved model can pay more attention to the global variables and increase the detection performance of small target information and dense target information. In addition, this paper constructs a helmet data set based on projects and adds training samples of dense targets and long-range small targets. Finally, the modified mosaic data enhancement reduces the influence of redundant background on the model and improves the recognition accuracy of the tiny target. The experimental results show that in the project, the average accuracy of helmet detection reaches 92.82%. Compared with SSD, YOLOv3, and YOLOv5, the average accuracy of this algorithm is improved by 6.89%, 8.28%, and 2.44% and has strong generalization ability in dense scenes and small target scenes, which meets the accuracy requirements of helmet wearing detection in engineering applications.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3