A Rumor Detection Method from Social Network Based on Deep Learning in Big Data Environment

Author:

Cen Junjie1ORCID,Li Yongbo2ORCID

Affiliation:

1. College of Computer Science and Technology, Henan Institute of Technology, Xinxiang, Henan 453002, China

2. College of Computer and Information Engineering, Henan Normal University, Xinxiang, Henan 453002, China

Abstract

Aiming at the lack of feature extraction ability of rumor detection methods based on the deep learning model, this study proposes a rumor detection method based on deep learning in social network big data environment. Firstly, the scheme of combining API interface and third-party crawler program is adopted to obtain Weibo rumor information from the Weibo “false Weibo information” public page, so as to obtain the Weibo dataset containing rumor information and nonrumor information. Secondly, the distributed word vector is used to encode text words, and the hierarchical Softmax and negative sampling are used to improve the training efficiency. Finally, a classification and detection model based on the combination of semantic features and statistical features is constructed, the memory function of Multi-BiLSTM is used to explore the dependency between data, and the statistical features are combined with semantic features to expand the feature space in rumor detection and describe the distribution of data in the feature space to a greater extent. Experiments show that when the word vector dimension is 300, compared with the compared literature, the accuracy of the proposed method is improved by 4.232% and 1.478%, respectively, and the F1 value of the proposed method is improved by 5.011% and 1.795%, respectively. The proposed method can better extract data features and has better rumor detection ability.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DEVELOPING GAME THEORY-BASED METHODS FOR MODELING INFORMATION CONFRONTATION IN SOCIAL NETWORKS;Scientific Journal of Astana IT University;2024-06-30

2. Web information extraction and fake news detection in twitter using optimized hybrid bi-gated deep learning network;Multimedia Tools and Applications;2024-05-09

3. A Systematic Literature Review on Rumor Detection Techniques in Social Media Platforms;2024 International Conference on Expert Clouds and Applications (ICOECA);2024-04-18

4. Synews: a synergy-based rumor verification system;Social Network Analysis and Mining;2024-03-15

5. Toward Detecting Rumor Initiator in Online Social Networks Using Ontology-Driven Model;Arabian Journal for Science and Engineering;2024-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3