Multiobjective Optimization Method Based on Adaptive Parameter Harmony Search Algorithm

Author:

Sabarinath P.1,Thansekhar M. R.1,Saravanan R.2

Affiliation:

1. K.L.N College of Engineering, Pottapalayam 630611, India

2. Sri Krishna College of Technology, Coimbatore 641 042, India

Abstract

The present trend in industries is to improve the techniques currently used in design and manufacture of products in order to meet the challenges of the competitive market. The crucial task nowadays is to find the optimal design and machining parameters so as to minimize the production costs. Design optimization involves more numbers of design variables with multiple and conflicting objectives, subjected to complex nonlinear constraints. The complexity of optimal design of machine elements creates the requirement for increasingly effective algorithms. Solving a nonlinear multiobjective optimization problem requires significant computing effort. From the literature it is evident that metaheuristic algorithms are performing better in dealing with multiobjective optimization. In this paper, we extend the recently developed parameter adaptive harmony search algorithm to solve multiobjective design optimization problems using the weighted sum approach. To determine the best weightage set for this analysis, a performance index based on least average error is used to determine the index of each weightage set. The proposed approach is applied to solve a biobjective design optimization of disc brake problem and a newly formulated biobjective design optimization of helical spring problem. The results reveal that the proposed approach is performing better than other algorithms.

Publisher

Hindawi Limited

Subject

Applied Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3