Facile One-Step Flame Synthesis of La1−xSrxMnO3 Nanoparticles for CO Catalytic Oxidation

Author:

Zhou Hao1ORCID,Wu Qiwei1,Qi Boyang1

Affiliation:

1. State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

A large amount of CO as hazardous emission in the iron ore sintering process has caused severe harm to the environment and human health. To control the emission of CO more effectively, the preparation of highly efficient catalysts has attracted much attention. In this study, the La1-xSrxMnO3 (0 ≤ x < 1) perovskite catalysts with different Sr2+ contents were prepared by the one-step flame synthesis method to treat CO pollutants in the iron and steel industry. The influence of Sr2+ doping on the structure and activity of catalytic were characterized and analyzed. La1-xSrxMnO3 perovskite catalysts exhibit good perovskite phases and loose spherical structures. The specific surface areas are between 4.1 and 12.0 m2 g−1. Combined with the results of H2-TPR and O2-TPD, the improvement of catalytic activity of La1-xSrxMnO3 perovskite can be attributed to the high concentration of active centers and oxygen vacancies. Significantly, the La0.4Sr0.6MnO3 catalyst presented the best reducibility and high content of absorbed active oxygen species, leading to a superior CO oxidation catalytic activity and reaches 50% CO conversion at 134.9°C and 90% at 163.2°C, respectively. The effects of water vapor and CO2 on the oxidation activity of La1-xSrxMnO3 perovskite was investigated. The flame-produced catalysts exhibit favorable catalytic stability and antisintering ability, achieving 100% CO conversion after fifth consecutive oxidation cycles.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3