Affiliation:
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
Abstract
This paper presents a new robust and efficient time integration algorithm suitable for various complex nonlinear structural dynamic finite element problems. Based on the idea of composition, the three-point backward difference formula and a generalized central difference formula are combined to constitute the implicit algorithm. Theoretical analysis indicates that the composite algorithm is a single-solver algorithm with satisfactory accuracy, unconditional stability, and second-order convergence rate. Moreover, without any additional parameters, the composite algorithm maintains a symmetric effective stiffness matrix and the computational cost is the same as that of the trapezoidal rule. And more merits of the proposed algorithm are revealed through several representative finite element examples by comparing with analytical solutions or solutions provided by other numerical techniques. Results show that not only the linear stiff problem but also the nonlinear problems involving nonlinearities of geometry, contact, and material can be solved efficiently and successfully by this composite algorithm. Thus the prospect of its implementation in existing finite element codes can be foreseen.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献